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ABSTRACT

A significant challenge in radiative transfer theory for atmospheres of exoplanets and brown dwarfs
is the derivation of computationally e�cient methods that have adequate fidelity to more precise, nu-
merically demanding solutions. In this work, we extend the capability of the first open-source radiative
transfer model for computing the reflected light of exoplanets at any phase geometry, PICASO: Plane-
tary Intensity Code for Atmospheric Spectroscopy Observations. Until now, PICASO has implemented
two-stream approaches to the solving the radiative transfer equation for reflected light, in particular
following the derivations of Toon et al. (1989) (Toon89). In order to improve the model accuracy,
we have considered higher-order approximations of the phase functions, namely, we have increased the
order of approximation from 2 to 4, using spherical harmonics. The spherical harmonics approximation
decouples spatial and directional dependencies by expanding the intensity and phase function into a
series of spherical harmonics, or Legendre polynomials, allowing for analytical solutions for low-order
approximations to optimize computational e�ciency. We rigorously derive the spherical harmonics
method for reflected light and benchmark the 4-term method (SH4) against Toon89 and two indepen-
dent and higher-fidelity methods (CDISORT & doubling-method). On average, the SH4 method provides
an order of magnitude increase in accuracy, compared to Toon89. Lastly, we implement SH4 within
PICASO and observe only modest increase in computational time, compared to two-stream methods
(20% increase).

Keywords: Radiative transfer (1335) — Radiative transfer equation (1336)

1. INTRODUCTION

A serious challenge in atmospheric studies is the derivation of computationally e�cient methods to solve the radia-
tive transfer equation in a scattering and absorbing medium. Exact solutions typically do not exist; thus, we rely on
approximate methods to estimate solutions (Stephens & Preisendorfer 1984; Thomas & Stamnes 2002; Chandrasekhar
1960; Liou 2002). In recent decades, there has been particular focus on the derivation of simple and e↵ective ap-
proximate methods that have su�cient fidelity to more exact, numerically intricate solutions. This problem is further
complicated by the vast range of parameter values relevant for atmospheric models that make spectral inference for
exoplanets and Brown Dwarf problems computationally expensive (e.g. Madhusudhan & Seager 2009; Line et al. 2012;
Barstow et al. 2020).
The most popular approximate methods for solving the radiative transfer equation are the (1) discrete-ordinates

method (Chandrasekhar 1960; Stamnes et al. 1988, 2000), (2) Monte-Carlo method (Modest 2013; Iwabuchi 2006) and
(3) spherical harmonics method (Modest 1989, 2013; Olfe 1967; van Wijngaarden & Happer 2022).
The discrete-ordinates method (DOM) is arguably the most well-studied and widely used approach when both

rapidity and accuracy are required. The problem to be solved is the transfer of monochromatic radiation in a scattering,
absorbing and emitting plane-parallel atmosphere with a given function for bidirectional reflectivity at the lower
boundary. The general approach is to discretize the solid angle by a finite number N of directions or “streams”,
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along which the radiative intensities are tracked. DISORT (Stamnes et al. 1988, 2000) is an example of a discrete
ordinate algorithm for radiative transfer in media that is assumed to be non-isothermal, vertically inhomogeneous,
but horizontally homogeneous. DISORT solves the radiative transfer equation within a single layer without boundary
conditions. The boundary conditions, along with continuity conditions at interfaces between layers, are used to establish
a system of linear equations, which are solved numerically to obtain the intensity. It is capable of simulating thermal
emission, absorption, and scattering for arbitrary phase functions across the electromagnetic spectrum from UV to
radio wavelengths. However, the convergence of DOM has been shown to depreciate for optically thick media (Modest
2013; Fiveland & Jessee 1996; Lewis & Miller 1984). This is due to the strongly coupled directional equations, which
make the DOMmethod very computationally expensive when calculating accurate solutions (Modest 2013; Ravishankar
2009). However, there exist a number of acceleration schemes to improve the convergence rate of DOM (Fiveland &
Jessee 1996; Lewis & Miller 1984).
Monte-Carlo methods operate by tracking emitted photons throughout the media. As a renowned accurate method

to model radiation, it is often used for bench-marking, however, it is computationally slow, making it unsuitable
for practical applications (Iwabuchi 2006; Mayer 2009). Furthermore, due to the significant noise that arises as a
consequence of the stochastic nature of Monte-Carlo, the method cannot be easily coupled with other deterministic
solvers.
The spherical harmonics (SH) approximation, denoted PN , decouples spatial and directional dependencies by ex-

panding the intensity and phase function into a series of spherical harmonics, or Legendre polynomials. This approach
results in fewer equations than the discrete-ordinates method and potentially obtains higher levels of accuracy at
comparable computational expense. This method has been widely applied to study radiative transfer in planetary and
stellar atmospheres (van Wijngaarden & Happer 2022; Li & Ramaswamy 1996; Zhang & Li 2013). However, higher
order PN are mathematically complex and increasingly di�cult to implement as N increases (Ge et al. 2015; van Wi-
jngaarden & Happer 2022). This method is appropriate for scattering media, however, low-order spherical harmonics
can produce inaccuracies for optically thin atmospheres, and are invalid for non-participating media1 (Ravishankar
2009).
Both the discrete-ordinates and spherical harmonics methods allow for increasing levels of complexity by modifying

the order of the approximation. For DOM, this involves increasing the number of streams, whereas for SH this involves
increasing the order of the Legendre expansion. The simplest and widely used choice within the discrete-ordinate
method is to limit the number of ordinates, or streams N , to two. In other words, this retains only hemispherical
asymmetry information. We refer to the N = 2 DOM method as the “two-stream” approximation.
The two-stream problem is formulated as a pair of ordinary di↵erential equations which are solved within an atmo-

sphere partitioned into homogeneous layers. Within these layers, the di↵erential equations have constant coe�cients
and hence can be solved analytically to produce simple exponential expressions for fluxes. There exist a number of vari-
ations of the two-stream approach, including the two-stream source function technique (Toon et al. 1989; Batalha et al.
2019) and the analytical formulation described in Heng et al. (2014, 2018). The equivalent, lowest order approximation
in spherical harmonics is the P1 or Eddington approximation (Meador & Weaver 1980; Irvine 1975; Chandrasekhar
1960; Mihalas & Mihalas 2013), where we expand the intensity and phase function to only two terms.
This low-order angular variation is generally justified for problems where scattering dominates or is the principle

interest; in particular, for slowly varying phase functions with angle or for large optical depths when intensity has been
smoothed by multiple scattering (Cuzzi et al. 1982). However, there are significant limitations associated with restrict-
ing angular variation to such low-orders, and these methods are often inappropriate for use with highly asymmetric
phase functions typical of particulate scattering by water and silicate clouds (Modest 2013). For example, Wiscombe
& Joseph (1977) studied the accuracy of albedos and absorptivity computed using this Eddington approximation, for
a homogeneous layer with varying values for optical depth, single-scattering albedo and zenith angle of the incident
beam. When compared to the doubling method, which was assumed by Wiscombe & Joseph (1977) to give “exact”
solutions to the problem, the errors tended to worsen when going from the Rayleigh to the Henyey-Greenstein to the
Mie scattering cases. Errors generally fell within the 10%–33% range for Mie scattering. This decrease in accuracy is
due to the increase in the forward scattering peak of the phase function. Such errors in the Mie case are unacceptably
large for many practical applications.

1 Media is described as non-participating if it does not absorb, emit or scatter radiation.
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To account for inaccuracies encountered for asymmetric phase functions, the implementation of the delta (�)-function
adjustment, which does not increase computational time, was introduced (Joseph et al. 1976). The ��adjustment
provides a third term closure through the second moment of the phase function expansion Liou et al. (1988). This
adjustment results in an improvement in the accuracy of radiative flux calculations by accounting for the strong forward
scattering of large particles. Wiscombe & Joseph (1977) analysed the impact of the �-adjustment on the accuracy of
albedos and absorptivity mentioned above, and found that the �-Eddington approximation reduced the above relative
error for Mie scattering of 10%–33% to less than 10%. Such improvement implies that the forward peak of the Mie
phase function can be better captured using �-adjusted approximations.
However, King (1986) found that relative errors of 15%–20% could still be produced for various two-stream ap-

proximations. Liou et al. (1988) conducted a similar analysis for the discrete-ordinate �-two-stream model. The
�-two-stream performed comparatively to the spherical harmonics �-Eddington approximation studied by King (1986).
For conservative scattering, both approximations display low accuracy for reflection values, on the order of 10%–30%
for incident solar angle µ0 < 0.5 and µ0 > 0.9 with ⌧ < 1. For transmission, errors exceeded 10% for µ0 < 0.2.
Further improvement in angular accuracy, whilst maintaining analytical capacity, can be obtained by increasing

the number of streams N or polynomials to four. Considering N = 4 in both DOM and SH results in an improved
representation of the phase function and subsequently greater accuracy of the angle-integrated parameters (Liou 1973,
1974; Li & Ramaswamy 1996). The �-function adjustment to account for the forward di↵raction peak can also be
generalised to higher order techniques (Wiscombe 1977; Cuzzi et al. 1982; Liou et al. 1988; Shibata & Uchiyama
1992), including the 4-stream method, and o↵ers significant accuracy improvement. Liou et al. (1988) conducted
the same relative accuracy analysis on the �-four-stream approximation (DOM) as discussed above for �-two-stream
and �-Eddington. In contrast to the >10% errors observed for the �-two-stream approximations, the reflection and
transmission values calculated using the �-four-stream approximation were within 5% accuracy, except for a number
of small regions within the parameter space where the relative accuracies remained below 10%. Generally, these
higher inaccuracies occurred in optically thin regions with small solar zenith angles µ0 < 0.3, where the reflection and
transmission values themselves were very small, thus the absolute errors were extremely small (< 1%). The authors
concluded that the �-four stream approximation applied to the computation of solar fluxes covering the entire solar
spectrum can achieve averaged accuracy within 5%, and thus may be su�cient for studying the flux distribution for
solar radiative transfer in cloudy atmospheres (Liou et al. 1988; Liou 1973).
Despite the evidence in the literature suggesting that four-stream methods o↵er significant improvements in model

accuracy, the conceptual simplicity and ease of implementation of two-stream methods is attractive for use in radiative
transfer models. A widely used model is that of Toon et al. (1989) who derived a general two-stream solution for the
upward and downward fluxes within a single homogeneous layer. This single-layer solution is extended to multiple
homogeneous layers through the solving of a matrix system of equations, with flux continuity conditions enforced
at the interfaces between layers. Following this, the authors introduce the two-stream source function technique,
which involves solving the radiative transfer equation (1) with the source function written in terms of the two-stream
intensity; thus this approximation of the source function can be inferred from the flux solution obtained in the first
step. With the source function specified, the radiative transfer equation (1) can be easily solved to give the azimuthally
averaged intensity I(⌧, µ) at the top (⌧ = 0) and bottom (⌧ = @⌧n) of a layer and thereby the top and bottom of the
atmosphere. The Toon et al. (1989) methodology has been implemented in Python code PICASO (Batalha et al. 2022).
PICASO, however, does not have the ability to move to higher order streams, and there hasn’t been an extension of
Toon et al. (1989) to four terms.
Here we present a novel approach using spherical harmonics. Similar to the Toon et al. (1989) methodology, we

derive and solve a system of equations for the layer-wise upwards and downwards fluxes, however we choose a �-
adjusted four-term spherical harmonics (P3) approximation in place of the two-stream approach. We then extend the
source-function technique for the P3 approach to derive the azimuthally averaged intensity emerging from the top of
a vertically inhomogeneous atmosphere. This is then used in an example calculation to compute the full geometric
albedo spectrum for some cloudy model planets. The spherical harmonics method that we implement is similar to
the analysis conducted by Zhang & Li (2013), however, we extend the method to multi-layer atmospheres via the
source-function technique, rather than the doubling-adding method studied by Zhang & Li (2013).
We study these with spherical harmonics and compare our results to other models in the literature. Specifically the

applications in atmospheric modeling often require accurate results in reflection, transmission and absorption for a wide
variety of optical depths and solar zenith angles. Therefore, this work is outlined as follows: we begin by outlining the
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spherical harmonics method for solving the radiative transfer equation within a single layer in Section 2. We describe
both the P1 and P3 solutions before extending our analysis to multiple layers in Section 3. In Section 4, we describe
our extension to the Toon et al. (1989) source-function technique. We then conduct a series of model comparisons in
Section 5. The first of these analyses is the comparison of reflection and transmission values obtained via spherical
harmonics to those obtained via the discrete-ordinate method (DOM) and the doubling method. This comparison
follows the work of Liou (1973) who produced the DOM and doubling data that we use. Next, we compare various
model outputs to that of DISORT, in particular, the azimuthally averaged intensity varying with both asymmetry and
optical depth, as well as the layer-wise vertical fluxes. Finally, we conclude our model comparisons with an analysis
of the geometric albedo produced by the spherical harmonics method compared to PICASO’s original two stream Toon
et al. (1989) method.
We intend for this work to be a comprehensive explanation of the spherical harmonics technique for 1D radiative

transfer of reflected light that can easily be cross-referenced with the numerical method implemented within PICASO.
For this reason, we step through the derivation of the model and include the key mathematical expressions needed
to understand the methodology, and hence, the algorithm. We have also included hyperlinks that can be accessed
by clicking the following icon: �, that will redirect the reader to the relevant lines of code (stored on GitHub)
corresponding to the mathematical expressions in question.

2. SOLVING THE RADIATIVE TRANSFER EQUATION USING SPHERICAL HARMONICS

We wish to use the spherical harmonics technique to solve the azimuthally-averaged, one-dimensional radiative
transfer equation:

µ
@I

@⌧
(⌧, µ) = I(⌧, µ)� w0

2

Z
1

�1

I(⌧, µ0)P(µ, µ0)dµ0 � w0

4⇡
F�e

� ⌧
µ0 P(µ,�µ0), (1)

where location within the atmosphere is specified by ⌧ 2 [0, ⌧N ], (where ⌧N is the cumulative optical depth), I is the
azimuthally averaged intensity and w0 is the single scattering albedo. The incoming solar flux is F�, and the direction
of incident solar and outgoing scattered radiation is defined by the cosine of the zenith angles, denoted µ0 and µ
respectively. Finally, P(µ, µ0) is the azimuthally averaged scattering phase function.
Both the phase function and intensity can be expanded in terms of Legendre polynomials, up to given order L:

P(µ, µ0) =
LX

l=0

�lPl(µ)Pl(µ
0), (2)

I(⌧, µ) =
LX

l=0

(2l + 1)Il(⌧)Pl(µ), (3)

where the coe�cients �l of the phase function expansion can be determined from the orthogonal property of Legendre
polynomials (Liou 2002):

�l =
2l + 1

2

Z
1

�1

P(cos⇥)Pl(cos⇥)d cos⇥. (4)

Substituting (2) and (3) into (1) and using both the orthogonality property and recursion relation of Legendre
polynomials, we obtain

LX

l=0


(l + 1)

dIl+1

d⌧
+ l

dIl�1

d⌧

�
Pl(µ) =

LX

l=0

[alIl(⌧)� ble
� ⌧

µ0 ]Pl(µ), (5)

where

al = (2l + 1)� w0�l, (6)

bl =
w0�lF�

4⇡
Pl(�µ0), (7)

for l = 0, · · · , L �.
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2.1. P1 single-layer solution

For clarity and to demonstrate the spherical harmonics methodology, we first consider an atmosphere consisting of
a single horizontally homogeneous layer where the optical properties of which are characterized by its single scattering
albedo w0, asymmetry parameter g0 and optical thickness ⌧N . We will extend this analysis to multiple layers in
Section 3. The two-stream spherical harmonics problem is denoted P1, where L = 1 represents the highest Legendre
polynomial in the expansion. We can formulate (5) as a matrix system given by

d

d⌧

 
I0
I1

!
=

 
0 a1
a0 0

! 
I0
I1

!
�
 
b1
b0

!
e�

⌧
µ0 , (8)

which has solution  
I0
I1

!
=

 
e��⌧ e�⌧

�qe��⌧ qe�⌧

! 
X0

X1

!
+

 
⌘0
⌘1

!
e�

⌧
µ0 , (9)

where � =
p
a0a1, q = �/a1 and

⌘0 =
1

1/µ2

0
� �2

(b1/µ0 � a1b0) , (10)

⌘1 =
1

1/µ2

0
� �2

(b0/µ0 � a0b1) . (11)

Coe�cients X0 and X1 are to be determined from boundary conditions. The details of this solution are outlined in
Appendix B.
In order to solve for radiative-convective equilibrium temperature structure, the net upward and downward fluxes

are required at every layer in the atmosphere. Since the ultimate goal of this work is to present the spherical harmonics
method for both incident optical and emitted thermal radiation, we must calculate such fluxes. As the transformation
to fluxes is non-trivial, especially for non-expert readers, we present the explicit equations.
We can write (9) in terms of fluxes where F±(⌧) = 2⇡

R ±1

0
µI(⌧, µ) dµ. Recalling the expansion of intensity I in

Legendre polynomials (3), the upward and downward fluxes can be written as

F±(⌧) = 2⇡

Z ±1

0

µ[I0(⌧) + 3µI1(⌧)]dµ, (12)

= 2⇡


1

2
I0(⌧)± I1(⌧)

�
. (13)

Therefore, (9) formulated in terms of fluxes is given as

 
F�

F+

!
=

 
Q+e��⌧ Q�e�⌧

Q�e��⌧ Q+e�⌧

! 
X0

X1

!
+

 
Z�

Z+

!
, (14)

where Q± = ⇡(1 ± 2q) and Z±(⌧) = ⇡(⌘0 ± 2⌘1). For the single-layer problem, we enforce the following boundary
conditions (Toon et al. 1989) on (14)

F�(0) = 0, (15)

F+(⌧N ) = AS [F
�(⌧N ) + µ0F�e

� ⌧
µ0 ], (16)

where AS is the surface reflectivity. These boundary conditions enforce that there is no incident di↵use flux at the
top of the atmosphere, and the upward flux at the surface is the sum of the reflected downward di↵use flux and the
reflection of the unattenuated portion of the direct beam.

2.2. P3 single-layer

The same principles applied to the P1 problem can be extended to study higher-order techniques. We increase the
order of approximation to L = 3, more specifically, we consider the P3 problem or the four-term spherical harmonics



6 Rooney et al.

technique within a single layer. In a similar method to the P1 problem in Section 2.1, we can write (5) as

d

d⌧

0

BBB@

I0
I1
I2
I3

1

CCCA
=

0

BBB@

0 a1 0 � 2a3
3

a0 0 0 0

0 0 0 a3
3

� 2a0
3

0 a2
3

0

1

CCCA

0

BBB@

I0
I1
I2
I3

1

CCCA
�

0

BBB@

b1 � 2b3
3

b0
b3
3

b2
3
� 2b0

3

1

CCCA
e�

⌧
µ0 , (17)

which has solution

0

BBB@

I0
I1
I2
I3

1

CCCA
=

0

BBB@

e��1⌧ e�1⌧ e��2⌧ e�2⌧

R1e��1⌧ �R1e�1⌧ R2e��2⌧ �R2e�2⌧

Q1e��1⌧ Q1e�1⌧ Q2e��2⌧ Q2e�2⌧

S1e��1⌧ �S1e�1⌧ S2e��2⌧ �S2e�2⌧

1

CCCA

0

BBB@

X0

X1

X2

X3

1

CCCA
+

0

BBB@

⌘0
⌘1
⌘2
⌘3

1

CCCA
e�

⌧
µ0 (18)

where

�1,2 =

r
1

2
(� ±

p
�2 � 4�), � = a0a1 +

1

9
a2a3 +

4

9
a0a3, � =

1

9
a0a1a2a3, (19)

R1,2 = � a0
�1,2

, Q1,2 =
1

2

 
a0a1
�2

1,2

� 1

!
, S1,2 = � 3

2a3

✓
a0a1
�1,2

� �1,2

◆
, (20)

and ⌘l = �l/� for � = 9f(1/µ0), f(x) = x4 � �x2 + � and

�0 = (a1b0 � b1/µ0)(a2a3 � 9/µ2

0
) + 2(a3b2 � 2a3b0 � 3b3/µ0)/µ

2

0
, (21)

�1 = (a0b1 � b0/µ0)(a2a3 � 9/µ2

0
)� 2a0(a3b2 � 3b3/µ0)/µ0, (22)

�2 = (a3b2 � 3b3/µ0)(a0a1 � 1/µ2

0
)� 2a3(a0b1 � b0/µ0)/µ0, (23)

�3 = (a2b3 � 3b2/µ0)(a0a1 � 1/µ2

0
) + 2(3a0b1 � 2a0b3 � 3b0/µ0)/µ

2

0
. (24)

We wish to consider the problem in terms of fluxes, namely F±(⌧) = 2⇡
R ±1

0
I(⌧, µ)P1(µ) dµ and f±(⌧) =

2⇡
R ±1

0
I(⌧, µ)P3(µ) dµ. Considering the Legendre expansion of intensity (3), these fluxes are given as

F±(⌧) = 2⇡

Z ±1

0

µ


I0(⌧) + 3µI1(⌧) +

5

2
(3µ2 � 1)I2(⌧) +

7

2
(5µ3 � 3µ)I3(⌧)

�
dµ, (25)

= 2⇡

✓
I0(⌧)± I1(⌧) +

5

8
I2(⌧)

◆
, (26)

f±(⌧) = 2⇡

Z ±1

0

1

2

�
5µ3 � 3µ

� 
I0(⌧) + 3µI1(⌧) +

5

2
(3µ2 � 1)I2(⌧) +

7

2
(5µ3 � 3µ)I3(⌧)

�
dµ, (27)

= 2⇡

✓
�1

8
I0(⌧) +

5

8
I2(⌧)± I3(⌧)

◆
. (28)

System (18) can therefore be rewritten in terms of fluxes as

0

BBB@

F�

f�

F+

f�

1

CCCA
=

0

BBB@

p�
1
e��1⌧ p+

1
e�1⌧ p�

2
e��2⌧ p+

2
e�2⌧

q�
1
e��1⌧ q+

1
e�1⌧ q�

2
e��2⌧ q+

2
e�2⌧

p+
1
e��1⌧ p�

1
e�1⌧ p+

2
e��2⌧ p�

2
e�2⌧

q+
1
e��1⌧ q�

1
e�1⌧ q+

2
e��2⌧ q�

2
e�2⌧

1

CCCA

0

BBB@

X0

X1

X2

X3

1

CCCA
+

0

BBB@

Z�
1

Z�
2

Z+

1

Z+

2

1

CCCA
(29)

where p±
1,2 = ⇡(1±2R1,2+

5

4
Q1,2), q

±
1,2 = ⇡(� 1

4
+ 5

4
Q1,2±2S1,2), Z

±
1
(⌧) = ⇡(⌘0±2⌘1+

5

4
⌘2), Z

±
2
(⌧) = ⇡(� 1

4
⌘0+

5

4
⌘2±2⌘3).
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For the single-layer problem, we enforce the following boundary conditions on (29),

F�(0) = 0, (30)

f�(0) = 0, (31)

F+(⌧N ) = AS [F
�(⌧N ) + µ0F�e

� ⌧
µ0 ], (32)

f+(⌧N ) = AS [f
�(⌧N )� 1

4
µ0F�e

� ⌧
µ0 ], (33)

where AS is the surface reflectivity. The derivation of the bottom boundary condition (33) for f+ is outlined in
Appendix G.

3. EXTENSION TO MULTIPLE LAYERS

The procedures outlined in Sections 2.1 and 2.2 can be extended to multiple layers by solving the flux systems (14)
for P1 and (29) for P3 within each layer and enforcing continuity boundary conditions between layers along with the
boundary conditions given above for the top and bottom of the atmosphere.
We divide the atmosphere into N homogeneous layers of optical depth @⌧n = ⌧n � ⌧n�1 for n = 1, . . . , N . To solve

the radiative transfer equation (1) in the nth layer we rescale the optical depth as

⌧̂ = ⌧ � ⌧n�1, ⌧̂ 2 [0, @⌧n]. (34)

Dropping the hats, we continue with the solutions within layer n for ⌧ 2 [0, @⌧n].

3.1. P1 multiple layers

For N layers, we must solve system (8) within every homogeneous layer. The solution at the top of layer n is given
by  

I0,n
I1,n

!
=

 
e��n⌧ e�n⌧

�qne��n⌧ qne�n⌧

! 
X0,n

X1,n

!
�
 
⌘0,n
⌘1,n

!
e�

1
µ0

(⌧+⌧n�1), (35)

for ⌧ 2 [0, @⌧n], and where we extend the single-layer definitions for ⌘ given by (11) to obtain

⌘0,n =
1

1/µ2

0
� �2

n

(b1,n/µ0 � a1,nb0,n) , (36)

⌘1,n =
1

1/µ2

0
� �2

n

(b0,n/µ0 � a0,nb1,n) , (37)

and al,n = (2l+ 1)�w0,n�l,n, bl,n = w0,n�l,nF�Pl(�µ0)/4⇡, �n =
p
a0,na1,n, and qn = �/a1,n �, similarly extended

from single-layer definitions (7). In terms of fluxes,

 
F�
n

F+

n

!
=

 
Q+

n e
��n⌧ Q�

n e
�n⌧

Q�
n e

��n⌧ Q+

n e
�n⌧

! 
X0,n

X1,n

!
+

 
Z�
n

Z+

n

!
e�

1
µ0

(⌧+⌧n�1), (38)

where Q±
n = ⇡(1± 2qn), Z±

n (⌧) = ⇡(⌘0,n ± 2⌘1,n) �, and with boundary conditions �

F�
1
(0) = 0, (39)

F�
n (@⌧n) = F�

n+1
(0), (40)

F+

n (@⌧n) = F+

n+1
(0), (41)

F+

N (⌧N ) = AS [F
�
N (⌧N ) + µ0F�e

� ⌧N
µ0 ]. (42)

The flux problem is formulated in PICASO by representing the system in terms of banded matrices, and solved using
the solve banded � functionality of SciPy (Virtanen et al. 2020).



8 Rooney et al.

3.2. P3 multiple layers

Consider L = 3. In a similar method to the P1 problem, the solution to the radiative transfer equation within layer
n is given by

0

BBB@

I0,n
I1,n
I2,n
I3,n

1

CCCA
=

0

BBB@

e��1,n⌧ e�1,n⌧ e��2,n⌧ e�2,n⌧

R1,ne��1,n⌧ �R1,ne�1,n⌧ R2,ne��2,n⌧ �R2,ne�2,n⌧

Q1,ne��1,n⌧ Q1,ne�1,n⌧ Q2,ne��2,n⌧ Q2,ne�2,n⌧

S1,ne��1,n⌧ �S1,ne�1,n⌧ S2,ne��2,n⌧ �S2,ne�2,n⌧

1

CCCA

0

BBB@

X0,n

X1,n

X2,n

X3,n

1

CCCA
�

0

BBB@

⌘0,n
⌘1,n
⌘2,n
⌘3,n

1

CCCA
e�

1
µ0

(⌧+⌧n�1), (43)

for ⌧ 2 [0, @⌧n], where �

�1,2,n =

r
1

2
(�n ±

p
�2
n � 4�n), �n = a0,na1,n +

1

9
a2,na3,n +

4

9
a0,na3,n, �n =

1

9
a0,na1,na2,na3,n, (44)

and �

R1,2,n = � a0,n
�1,2,n

, Q1,2,n =
1

2

 
a0,na1,n
�2

1,2,n

� 1

!
, S1,2,n = � 3

2a3,n

✓
a0,na1,n
�1,2,n

� �1,2,n

◆
. (45)

We also define ⌘i,n = �i,n/� �, for � = 9f(1/µ0), f(x) = x4 � �nx2 + �n and

�0,n = (a1,nb0,n � b1,n/µ0)(a2,na3,n � 9/µ2

0
) + 2(a3,nb2,n � 2a3,nb0,n � 3b3,n/µ0)/µ

2

0
, (46)

�1,n = (a0,nb1,n � b0,n/µ0)(a2,na3,n � 9/µ2

0
)� 2a0,n(a3,nb2,n � 3b3,n/µ0)/µ0, (47)

�2,n = (a3,nb2,n � 3b3,n/µ0)(a0,na1,n � 1/µ2

0
)� 2a3,n(a0,nb1,n � b0,n/µ0)/µ0, (48)

�3,n = (a2,nb3,n � 3b2,n/µ0)(a0,na1,n � 1/µ2

0
) + 2(3a0,nb1,n � 2a0,nb3,n � 3b0,n/µ0)/µ

2

0
. (49)

This problem can be written in terms of fluxes as

0

BBB@

F�
n

f�
n

F+

n

f�
n

1

CCCA
=

0

BBBB@

p�
1,ne

��1,n⌧ p+
1,ne

�1,n⌧ p�
2,ne

��2,n⌧ p+
2,ne

�2,n⌧

q�
1,ne

��1,n⌧ q+
1,ne

�1,n⌧ q�
2,ne

��2,n⌧ q+
2,ne

�2,n⌧

p+
1,ne

��1,n⌧ p�
1,ne

�1,n⌧ p+
2,ne

��2,n⌧ p�
2,ne

�2,n⌧

q+
1,ne

��1,n⌧ q�
1,ne

�1,n⌧ q+
2,ne

��2,n⌧ q�
2,ne

�2,n⌧

1

CCCCA

0

BBB@

X0,n

X1,n

X2,n

X3,n

1

CCCA
+

0

BBBB@

Z�
1,n

Z�
2,n

Z+

1,n

Z+

2,n

1

CCCCA
e�

1
µ0

(⌧+⌧n�1), (50)

where p±
1,2,n = ⇡(1 ± 2R1,2,n + 5

4
Q1,2,n), q±

1,2,n = ⇡(� 1

4
+ 5

4
Q1,2,n ± 2S1,2,n) �, Z±

1,n = ⇡(⌘0,n ± 2⌘1,n + 5

4
⌘2,n),

Z2,n± = ⇡(� 1

4
⌘0,n + 5

4
⌘2,n ± 2⌘3,n) �, and with boundary conditions

F�
1
(0) = 0, f�

1
(0) = 0, (51)

F�
n (@⌧n) = F�

n+1
(0), f�

n (@⌧n) = f�
n+1

(0), (52)

F+

n (@⌧n) = F+

n+1
(0), f+

n (@⌧n) = f+

n+1
(0), (53)

F+

N (⌧N ) = AS [F
�
N (⌧N ) + µ0F�e

� ⌧N
µ0 ], f+

N (⌧N ) = AS [f
�
N (⌧N )� 1

4
µ0F�e

� ⌧
µ0 ] (54)

for n = 1, 2, · · · , N � 1 �. The derivation of the bottom boundary condition for f+

N (⌧N ) is outlined in Appendix G.
As for the P1 case, the flux problem is formulated in PICASO by representing the system in terms of banded matrices,
and solved using the solve banded � functionality of SciPy (Virtanen et al. 2020).

4. SOURCE FUNCTION TECHNIQUE

We follow the methodology outlined in Toon et al. (1989) and apply the source function technique to calculate the
emergent intensity from the top of the atmosphere. The radiative transfer equation (1) can be solved to yield the
azimuthally integrated intensity at angle µ at the top of the nth layer (⌧ = 0) as

In(0, µ) = In(@⌧n, µ)e
� @⌧n

µ +
1

µ

Z @⌧n

0

Svte
� ⌧

µ d⌧, (55)
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for

Svt =
w0,n

2

Z
1

�1

It(⌧, µ
0)P(µ, µ0)dµ0 + Sn(⌧, µ), (56)

where

Sn(⌧, µ) =
w0

4⇡
F�e

� ⌧+⌧n�1
µ0 P(µ,�µ0). (57)

Note that we have used It to denote the approximated intensity (3) in place of the true intensity in the source term
(56). Therefore we can rewrite (56) as

Svt = w0,n

LX

l=0

�lIl(⌧)Pl(µ) + Sn(⌧, µ). (58)

Let us consider the integral term in (55). Using (58), this can be written as

Z @⌧n

0

Svte
� ⌧

µ d⌧ = w0

LX

l=0

�lPl(µ)

Z @⌧n

0

Il(⌧)e
� ⌧

µ d⌧ +

Z @⌧n

0

Sn(⌧, µ)e
� ⌧

µ d⌧. (59)

We can calculate the second term on the right-hand side of (59) to be �
Z @⌧n

0

Sn(⌧, µ)e
� ⌧

µ d⌧ =
w0

4⇡
F�P(µ,�µ0)

µµ0

µ+ µ0

⇣
1� e�@⌧n

µ+µ0
µµ0

⌘
e�

⌧n
µ0 . (60)

Next, let us write An,int =
R @⌧n
0

Il(⌧)e
� ⌧

µ d⌧ . Therefore we can calculate An,int for the P1 problem �:

An,int =

 
A0,n A1,n

�QA0,n QA1,n

! 
X0,n

X1,n

!
+

 
N0,n

N1,n

!
e�

⌧n
µ0 (61)

where �

A0,n =
1

1/µ+ �n

⇣
1� e�@⌧n( 1

µ+�n)
⌘
, (62)

A1,n =
1

1/µ� �n

⇣
1� e�@⌧n( 1

µ��n)
⌘
, (63)

and
Ni,n = ⌘i,n

µµ0

µ+ µ0

⇣
1� e�@⌧n

µ+µ0
µµ0

⌘
(64)

where ni,n = �i,n/� are defined by equations (46)–(49).
Similarly for the P3 problem �:

An,int =

0

BBB@

A00,n A01,n A02,n A03,n

A10,n A11,n A12,n A13,n

A20,n A21,n A22,n A23,n

A30,n A31,n A32,n A33,n

1

CCCA

0

BBB@

X0,n

X1,n

X2,n

X3,n

1

CCCA
+

0

BBB@

N0,n

N1,n

N2,n

N3,n

1

CCCA
e�

⌧n
µ0 , (65)

where �

A00,n = ↵1,n, A01,n = �1,n, A02,n = ↵2,n, A03,n = �2,n, (66)

A10,n = R1,n↵1,n, A11,n = �R1,n�1,n, A12,n = R2,n↵2,n, A13,n = �R2,n�2,n, (67)

A20,n = Q1,n↵1,n, A21,n = Q1,n�1,n, A22,n = Q2↵2,n, A23,n = Q2,n�2,n, (68)

A30,n = S1,n↵1,n, A31,n = �S1,n�1,n, A32,n = S2↵2,n, A33,n = �S2,n�2,n, (69)

(70)

and

↵i,n =
1

1/µ+ �i,n

⇣
1� e�@⌧n( 1

µ+�i,n)
⌘
, �i,n =

1

1/µ� �i,n

⇣
1� e�@⌧n( 1

µ��i,n)
⌘
. (71)

Coe�cients Ri,n, Qi,n, Si,n are defined using equations (45), and Ni,n using (64).



10 Rooney et al.

5. ANALYSIS

5.1. Liou Comparison

To quantitatively justify the e↵ective performance of the spherical harmonics method for radiative transfer, we
compare it with established methods in the literature. The physical quantities of interest for radiative balance studies
in planetary atmospheres are the vertical distributions of fluxes. To study the capabilities of the spherical harmonics
method in flux calculation for solar radiation, we repeat the analysis of Liou (1973), who numerically studied the
discrete-ordinate method (DOM) for radiative transfer by comparing the reflection and transmission values obtained
via DOM with those obtained using the doubling method.
The doubling method, first introduced by Van de Hulst (1963), is widely considered one of the most accurate tools

for multiple-scattering calculations (Liu & Weng 2006; Zhang & Li 2013; Chou 1992; Li & Ramaswamy 1996; Ayash
et al. 2008). In this approach, it is assumed that the reflection and transmission properties of a single, very thin,
homogeneous layer are known. The reflection and transmission properties of a layer twice as thick is then found
by considering two adjacent layers with properties described above and summing the contributions from each layer
(van de Hulst 1980). The reflection and transmission values for an arbitrarily thick layer is thus calculated by repeatedly
doubling until arriving at the desired thickness. Derived from the work of Stokes (1862), the method computes the
radiative properties of the medium instead of solving for the radiance field explicitly (Evans & Stephens 1991). This
allows for the easy computation of radiance exiting the atmosphere for many boundary conditions after the solution
has been found. Although a simple concept compared to the discrete ordinates and spherical harmonics methods, the
doubling method is very computational expensive due to the large iteration loop over the layers, therefore it is not
optimal for retrievals or data assimilation. Instead, the doubling method is often used as an accurate and detailed
benchmark for comparison with fast, approximate radiative transfer models.
We calculated the reflection and transmission values obtained by using the Toon89 implementation in PICASO

(Batalha et al. 2022) and 2-term and 4-term spherical harmonics (SH2 & SH4). Following the analysis of Liou
(1973), we consider single-layer atmospheres of optical thickness ⌧N = 0.25, 1, 4 and 16, where the scattering phase
function is given by the Henyey-Greenstein phase function (99) with asymmetry factor g0 = 0.75. For single scattering
albedos we choose values that represent the potential values for visible and near infrared of the solar spectrum for
clouds and aerosols, w0 = 1 and w0 = 0.8. Additionally, we choose to benchmark a range of cosine solar zenith angles
µ0 = 0.1, 0.5 and 0.9. We note that for comparison with the DOM and doubling methods discussed by Liou (1973),
we are restricted to the same parameter values considered by the authors. The reflection r, di↵use transmission tdif
and direct transmission tdir for solar radiation are given by

r =
F+(0)

⇡µ0F0

, (72)

tdif =
F�(⌧N )

⇡µ0F0

, (73)

tdir = exp(⌧N/µ0), (74)

The total transmission t is equal to tdif + tdir. Table 1 compares the reflection and total transmission values for each
model to those obtained using the doubling method which are taken from Table 1 in Liou (1973).
In Figure 1 we plot the percentage di↵erence between each model (Toon89, 2 and 4-term spherical harmonics [SH2,

SH4], 2 and 4-stream discrete ordinates [DOM2, DOM4]) and the doubling method. The values for DOM2, DOM4
and the doubling method are taken from Liou (1973), where the results for the doubling method are considered to be
the “true” solution. We use orange lines for 4-stream models (SH4 and DOM4), pink for 2-stream models (SH2 and
DOM2) with the exception of Toon89, which is plotted in purple. The solid lines represent the results produced by
the authors of this work (SH and Toon89) whereas the dashed lines represent those taken from (Liou 1973) (DOM).
Figure 1 shows that the results produced by Toon89 and DOM2 are visibly identical (< 0.01%). This is not surprising

since Toon89 is built upon the Toon et al. (1989) 2-stream methodology which utilizes the quadrature approximation
when deriving the solution coe�cients. The quadrature approximation is analogous to the 2-stream discrete-ordinates
approach to solving the radiative transfer equation.
In most cases considered, SH4 agrees more closely with the accurate doubling method than SH2, DOM2 and Toon89.

This is expected due to the higher-order approximation of the phase function. The 4-term advantage is most evident
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Reflection (w0 = 1) Transmisssion (w0 = 1)

µ0 µ0

⌧ Method 0.1 0.5 0.9 0.1 0.5 0.9

0.25

Toon89 0.41133 0.07635 -0.01294 0.58867 0.92365 1.01294

SH2 0.41742 0.09176 0.00423 0.58258 0.90824 0.99577

SH4 0.40745 0.06746 0.02331 0.59255 0.93254 0.97669

Doubling 0.41610 0.07179 0.02250 0.58390 0.92821 0.97751

1

Toon89 0.51778 0.07635 0.02389 0.48222 0.77441 0.97610

SH2 0.51577 0.09176 0.05904 0.48423 0.75109 0.94096

SH4 0.55781 0.06746 0.09758 0.44218 0.76739 0.90242

Doubling 0.58148 0.07179 0.09672 0.41852 0.75952 0.90328

4

Toon89 0.68564 0.07635 0.31611 0.31436 0.50001 0.68388

SH2 0.67143 0.09176 0.32974 0.32857 0.50002 0.67025

SH4 0.72698 0.06746 0.34904 0.27301 0.48146 0.65095

Doubling 0.73254 0.07179 0.34823 0.26746 0.48069 0.65178

16

Toon89 0.86859 0.07635 0.71338 0.13140 0.20899 0.28659

SH2 0.85624 0.09176 0.70623 0.14374 0.21874 0.29373

SH4 0.87891 0.06746 0.70853 0.12107 0.21351 0.29143

Doubling 0.88103 0.07179 0.70722 0.11897 0.21342 0.29279

Reflection (w0 = 0.8) Transmisssion (w0 = 0.8)

µ0 µ0

⌧ Method 0.1 0.5 0.9 0.1 0.5 0.9

0.25

Toon89 0.31802 0.05739 -0.01125 0.46566 0.84979 0.95403

SH2 0.31987 0.06802 0.00111 0.45934 0.83725 0.94049

SH4 0.30146 0.04662 0.01676 0.45385 0.85230 0.92677

Doubling 0.28961 0.04855 0.01547 0.43017 0.84756 0.92669

1

Toon89 0.37519 0.05739 -0.00064 0.29023 0.55267 0.76333

SH2 0.36348 0.06802 0.01710 0.28732 0.53231 0.73607

SH4 0.36158 0.04662 0.05275 0.22624 0.52033 0.72010

Doubling 0.35487 0.04855 0.04929 0.20556 0.51606 0.71772

4

Toon89 0.40411 0.05739 0.05152 0.06605 0.12281 0.20828

SH2 0.38034 0.06802 0.05024 0.06584 0.11729 0.19690

SH4 0.38125 0.04662 0.09327 0.04441 0.10603 0.22080

Doubling 0.37148 0.04855 0.08925 0.04539 0.10718 0.21953

16

Toon89 0.40571 0.05739 0.05636 0.00018 0.00034 0.00060

SH2 0.38128 0.06802 0.05297 0.00018 0.00033 0.00057

SH4 0.38204 0.04662 0.09700 0.00027 0.00063 0.00138

Doubling 0.37229 0.04855 0.09297 0.00027 0.00062 0.00139

Table 1. Comparison of reflection and transmission as computed by Toon89, 2-term spherical harmonics (SH2), 4-term spherical
harmonics (SH4) and by the doubling method for conservative and non-conservative scattering. The doubling method results
are taken from Liou (1973).

for the µ0 = 0.9 tests (Figures 1(c), 1(f), 1(i) and 1(l)), where the percentage di↵erence between the 2-stream methods
and the doubling method is approximately two orders of magnitude greater than that of the 4-stream methods.
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(a) Reflectivity for w0 = 1, µ0 = 0.1. (b) Reflectivity for w0 = 1, µ0 = 0.5. (c) Reflectivity for w0 = 1, µ0 = 0.9.

(d) Reflectivity for w0 = 0.8, µ0 = 0.1. (e) Reflectivity for w0 = 0.8, µ0 = 0.5. (f) Reflectivity for w0 = 0.8, µ0 = 0.9.

(g) Transmission for w0 = 1, µ0 = 0.1. (h) Transmission for w0 = 1, µ0 = 0.5. (i) Transmission for w0 = 1, µ0 = 0.9.

(j) Transmission for w0 = 0.8, µ0 = 0.1. (k) Transmission for w0 = 0.8, µ0 = 0.5. (l) Transmission for w0 = 0.8, µ0 = 0.9.

Figure 1. To illustrate model performance, we calculated the percentage di↵erence between each model (Toon89, 2 and 4-term
spherical harmonics [SH2, SH4], 2 and 4-stream discrete ordinates [DOM2, DOM4]) and the doubling method for reflection and
transmission. The raw data for Toon89 and spherical harmonics is given in Table 1 and the DOM and doubling method results
are taken from Liou (1973), where the results for the doubling method are considered to be the “true” solution.

However, in a few cases, particularly for small cosine zenith angle µ0 = 0.1, the 2-stream methods incur a lower
percentage di↵erence with the doubling method than their 4-stream counterparts for optically thin layers. For example,
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both the reflection and transmission values produced by SH2 in the w0 = 1, µ0 = 0.1 case (Figures 1(a)&(g)), agree
more closely than SH4 with the doubling benchmark for optical depth less than around 0.6. It is important to note,
however, that in this case, the 4-stream DOM method exhibits similar behaviour to SH4 and also su↵ers from worse
agreement with the doubling method than its 2-stream counterpart, indicating that this behaviour in the optical thin
region is not due to the choice of modelling method (SH versus DOM) but rather that 4-stream techniques are still
limited in the improvement that can be achieved over 2-stream techniques in particular cases.
In general, in the regions where SH2 exceeds the accuracy of the SH4, such as in the case discussed above, both

models remain within a 5% di↵erence with the doubling method. Therefore, even though SH4 might not be the
“optimal” model in these regions, it is still exhibiting excellent agreement with the benchmark model. Notably, when
considering the full range of parameters considered in this analysis, the SH4 values for reflectivity and transmission
are consistently within 10% of the doubling method, whereas SH2 can reach di↵erences of close to 100%. This can be
clearly realised in Figure 1(f).
Furthermore, SH4 performs comparatively to, if not better than, DOM4. We notice that in cases such as Figures

1(c), for w0 = 1, µ0 = 0.9 the maximum percentage di↵erence of both SH4 and DOM4 with the doubling method
occurs at the optically thin region at the top of the atmosphere. However, SH4 observes a percentage di↵erence of
approximately 4% versus a 40% di↵erence for DOM4. Similar discrepancies are observed for other cases throughout
the analysis. Liou (1973) concluded that the 4-stream DOM method may be of adequate accuracy for studies of the
flux distribution in the transfer of solar irradiance through cloudy atmospheres. We thus extend this conclusion to the
4-term spherical harmonics method.

5.2. CDISORT Comparison

The discrete ordinate solver, DISORT (Stamnes et al. 1988, 2000) is a versatile, well-tested and one of the most
widely used one-dimensional radiative transfer solvers. The numerical capabilities of DISORT extend to N -stream
discrete ordinates approximations, where N is arbitrary and considerably greater than 4 (typically DISORT is run for
32 streams). DISORT was originally written in FORTRAN (Stamnes et al. 2000). T. Dowling rewrote the code in C,
which we will refer to as CDISORT (Mayer & Kylling 2005; Buras et al. 2011).
To further study the e�cacy of the spherical harmonics method of solving the azimuthally-averaged radiative transfer

equation (1), we benchmark our model outputs against that of CDISORT.
We consider a test atmosphere that is comprised of 30 layers with cumulative optical depth ⌧ = 10�2 � 102, with

constant values for the single scattering albedo w0 and asymmetry parameter g0, and use the Henyey-Greenstein phase
function (99) to describe scattering. We consider incident solar radiation F� = 1 with a cosine solar zenith angle of
µ0.

AZIMUTHALLY-AVERAGED INTENSITY WITH ASYMMETRY

In Figure 2 we plot the azimuthally-averaged intensity emergent from the top of the atmosphere I(0, µ) against
the asymmetry parameter g0 for 32-stream CDISORT, Toon89 and 4-term spherical harmonics (SH4). This quantity is
important as it is used to calculate the geometric albedo of the planet. Each panel of Figure 2 represents a di↵erent
cosine zenith angle, namely µ = 0.9, 0.7, 0.4, 0.2. For each case, we have chosen to set µ to be equal to the cosine solar
zenith angle µ0. We also consider two single scattering albedos w0 = 0.4 and w0 = 0.9 in each plot, similar to our
doubling method benchmarking exercise against Liou (1973). In each plot, we notice that SH4 more closely matches
32-stream CDISORT than Toon89 does, especially towards high asymmetry. However, overall the agreement between all
models worsens as g0 increases. This is as expected because low-order approximations are inadequate representations
of highly asymmetric phase functions. We also notice that the digression of the solutions for high asymmetry is more
pronounced for smaller values of µ and µ0. This is similar to the behaviour observed in the Liou (1973) analysis in
Section 5.1.

AZIMUTHALLY-AVERAGED INTENSITY WITH OPTICAL DEPTH

In Figure 3 we study how the azimuthally-averaged intensity I(⌧, µ) varies with optical depth ⌧ for each of the
models. For this analysis, we set w0 = 0.9 and consider two values of asymmetry, namely g0 = 0.4 and g0 = 0.9. We
notice that the agreement between all three models is greater for low asymmetry (g0 = 0.4) – the models are more
disparate for the high asymmetry value of g0 = 0.9. Similar to the analysis of Figure 2, the agreement between the
solutions worsens as µ = µ0 decreases. This e↵ect is consistent with what was observed in the Liou analysis in Section
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(a) µ = µ0 = 0.9. (b) µ = µ0 = 0.7.

(c) µ = µ0 = 0.4. (d) µ = µ0 = 0.2.

Figure 2. Azimuthally-averaged intensity emergent from the top of the atmosphere with asymmetry g0 for a variety of zenith
angles µ, µ0 and single scattering albedo w0 = 0.4, 0.9. We compare CDISORT, Toon89 and SH4 and notice that the agreement
worsens for decreasing cosine zenith angle.

5.1. However, despite its limitations in high asymmetry and low cosine zenith angles, SH4 does o↵er a significant
improvement in agreement with CDISORT over Toon89 for all cases.

LAYER-WISE VERTICAL FLUXES

Figure 4 depicts the layer-wise downward, upward and net fluxes calculated by each model, where Figure 4(a) is
for incoming angle µ0 = 0.9 and 4(b) is for µ0 = 0.2. We consider a constant single scattering albedo of w0 = 0.5
and include results for two extreme asymmetry values in each plot, namely g0 = 0.0 and g0 = 0.9. We again notice
an improvement in the agreement with CDISORT of SH4 from Toon89. In particular, we observe negative upward flux
values for Toon89 in Figure 4(a). Negative fluxes have been reported for delta-Eddington calculations in the literature
and are discussed in detail by (Wiscombe 1977). The authors explain that, although unphysical, a negative flux does
is not particularly more problematic than an inaccurate positive flux; the importance lies in how great the error is.
SH4 does not exhibit this negative-flux behaviour.
For each of the 30-layer, single-wavelength simulations studied in this section, the Toon89 framework in PICASO took

on average 4e-5 seconds to run, while SH2 and SH4 took 2.5e-4 seconds and 3e-4 seconds respectively, using a 2021
Macbook Pro with the Apple M1 chip. All of the PICASO packages leverage numba’s CPU just-in-time compiling. (Lam
et al. 2015). We note that the Toon89 framework has been extensively used and su�ciently optimized, whereas the
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(a) g0 = 0.4. (b) g0 = 0.9.

Figure 3. Azimuthally-averaged intensity emergent from the top of the atmosphere with optical depth ⌧ for a variety of zenith
angles µ = µ0 = 0.2, 0.4, 0.7, 0.9 and asymmetry g0 = 0.4, 0.9. The single scattering albedo is w0 = 0.9. We compare CDISORT,
Toon89 and SH4 and notice that the agreement worsens for decreasing zenith angle and increasing g0.

(a) µ0 = 0.9.

(b) µ0 = 0.2.

Figure 4. Fluxes with optical depth ⌧ for cosine solar zenith angle (a) µ0 = 0.9 and (b) µ0 = 0.2, single scattering albedo
w0 = 0.5 and asymmetry g0 = 0.0, 0.9. We compare CDISORT with Toon89 and SH4 and notice that SH4 agrees marginally
better with CDISORT than Toon89.
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SH framework within PICASO is still in its infancy. With adequate computational optimization and code refinement,
we expect SH2 to operate at similar speeds to Toon89, and for SH4 to exhibit a comparable increase in speed. The
equivalent 30-layer, single-wavelength simulations ran by 32-stream CDISORT took on average 2.4e-1 seconds – three
orders of magnitude slower than the current implementation of SH4. Therefore, even without the appropriate speed
optimization and code refinement, SH4 o↵ers significantly faster solutions than the higher-order simulations of CDISORT,
whilst allowing notable improvement in model agreement over the two-stream Toon89.

5.3. Geometric Albedo Spectrum

Finally, we compare the ultimate geometric albedo produced by Toon89 and SH4 for a Jupiter-like system (1⇥Solar
metallicty, 25 ms�2 gravity, 5 AU from a sun-like star) with two di↵erent cloud parameterizations: 1) Jupiter-like
water clouds with a sedimentation e�ciency (Ackerman & Marley 2001) of fsed = 1, and 2) a single-parameter box
cloud profile described by a single asymmetry and single scattering albedo. The former case was also used in Batalha
et al. (2019) as the benchmark reflected light cloudy case. For the latter, we specify a cloud layer located between
P = 1 and P = 0.1 bars with asymmetry g0 = 0.9, single scattering w0 = 0.8 and layer optical depth ⌧ = 0.5. These
cases allow us to sample two di↵erent scattering regimes. The Jupiter-like water cloud represents the scenario where
the cloud is dominant source of scattering throughout the 0.3-1µm. The single-parameter box cloud represents the
scenario where Rayleigh is the dominant source of scattering at 0.5< µm, and clouds are the dominant source 0.5> µm.
This is particularly important to test because of the di↵erent methodologies for including Rayleigh scattering.
To model these two cases, we test two di↵erent scattering approaches for SH4 against the default scattering approach

used in Toon89. In the Toon89 framework of PICASO, multiple-scattering for clouds is always modelled using a one-
term Henyey-Greenstein (OTHG) phase function (99), whereas single-scattering is represented using a weighted sum
of a two-term Henyey-Greenstein (TTHG) phase function (103) for clouds, and Rayleigh, as described in Appendix
F.1. SH4 has more flexibility: namely, we can prescribe either OTHG or TTHG for both single and multiple scattering
for clouds, and we can include Rayleigh scattering in either scattering regimes. For this comparison, we replicate the
Toon89 framework for single scattering, but consider two cases for multiple scattering: (a) OTHG (with Rayleigh)
and (b) TTHG (with Rayleigh). The geometric albedo for each parameterization is plotted in Figure 5. The di↵erent
modelling approaches produce evident di↵erences in the geometric albedo.
For the Jupiter-like-cloud case [Figure 5(a)], the SH4 model with an OTHG multiple-scattering function agrees more

closely with Toon89 than the TTHG case, where the TTHG case is significantly brighter than the other two models.
The purpose of the TTHG framework is to better capture the back scattering peak, which contributes to the overall

(a) Jupiter cloud profile. (b) Single parameter box cloud profile.

Figure 5. Geometric albedo for a Jupiter atmosphere with (a) Jupiter clouds and (b) single parameter box cloud profile. We
compare the spectra produced by Toon89 and SH4, where we consider two di↵erent scattering options for the latter; one for
which the single scattering phase function is taken to be two-term Henyey-Greenstein (TTHG) while multi-scattering is one-term
Henyey Greenstein, and the other for which all scattering is assumed to be TTHG. The former of these two SH4 options is most
similar to the Toon89 analysis. �
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brightness (Batalha et al. 2019). Therefore, one major drawback of the standard PICASO methodology is its inability
to account for the back scattering peak for multiply scattered photons. Figure 5(a) shows how SH4 can better account
for this.
For the single parameter box cloud profile [Figure 5(b)], both SH4 cases produce di↵erent spectra than Toon89. In

the regime dominated by clouds (> 0.58µm), the SH4 TTHG is still the brightest case, similar to the case shown in
Figure 5(a). This suggests that, similar to the Jupiter-like case, the di↵erences in this regime are due to the additional
brightness from the inclusion of the TTHG treatment. In the region dominated by Rayleigh (< 0.58µm) the behaviour
flips and Toon89 is brighter than both SH4 OTHG and TTHG. Because the SH4 OTHG and TTHG spectra are
similar in this regime, the spectral di↵erences between SH4 and Toon89 are due to the di↵erences in how the Rayleigh
scattering is incorporated. PICASO post-processes Rayleigh into the multiple- and single-scattering phase function after
the Toon89 methodology. SH2/4 incorporate Rayleigh directly in the phase functions expansion (see Appendix F.1).

6. CONCLUSION

In this work, we presented a spherical harmonics approach to solving the radiative transfer equation for reflected light,
which has been implemented in modelling software PICASO Batalha et al. (2022). This new methodology allows us to
approximate scattering phase functions to higher orders than the original, two-stream implementation in PICASO, which
we denoted Toon89 to reflect its heritage from Toon et al. (1989). The primary purpose of this work was to rigorously
outline the derivation of the model, explaining the steps of the spherical harmonics analysis and explicitly stating the
matrix systems being solved by the model. To demonstrate the e�cacy of the higher-order model, we compared our
results to two independent models from Liou (1973) and Stamnes et al. (2000). These analyses illustrated the expected
superiority of higher-order approximations in radiative transfer calculations, whilst also elucidating the extent of the
improvement when moving from 2 to 4 term expansions. We studied the vertical distribution of fluxes by comparing
the reflection and transmission values obtained via 2 and 4-term discrete ordinates methods (DOM), as well as the more
accurate doubling method with those produced by 2 and 4-term spherical harmonics in Section 5.1. This investigation
highlighted that the choice of model (DOM or SH) is negligible compared to the order of approximation (2 or 4),
where the 4-term approximations significantly out-performed the 2-term approximations. However, in the majority
of the cases studied in this analysis, the SH approach was marginally better than the DOM approach. Extending
the conclusion of Liou (1973) regarding the comparison of low-order approximations with the doubling method, we
conclude that the 4-term spherical harmonics method may be of adequate accuracy for studied of the flux distribution
in the transfer of solar irradiance through cloudy atmospheres. When comparing the 2-stream Toon89 and four-term
SH4 to 32-stream CDISORT in Section 5.2, we noticed a significant enhancement of model accuracy when moving from
2 to 4 term approximations; we achieve notable improvement with minimal cost to computational expense.
Finally, we considered the impact of SH4 and the di↵erent scattering capabilities on the geometric albedo for a Jupiter

atmosphere with two types of clouds: (a) Jupiter clouds and (b) single parameter box cloud profile. This analysis
illustrated that the choice of multiple-scattering function can significantly a↵ect the reflected light spectra, thus the
user-specification of scattering behaviour renders the SH4 model useful for retrievals and fine-tuning of atmospheric
models. A major drawback of the standard PICASO methodology is its inability to account for the back scattering
peak for multiply scattered photons, a phenomenon that SH4 can better capture. This analysis further highlighted
the impact on spectra depending on how the Rayleigh scattering is incorporated.
The spherical harmonics technique outlined in this paper is also appropriate for modelling thermal emission. This

will be the focus of a future publication.
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Appendices
A. SPHERICAL HARMONICS METHODOLOGY

The azimuthally-averaged radiative transfer equation for reflected light is given by (1). By substituting (2)–(3) into
(1), we obtain

LX

l=0

(2l + 1)µ
dIl
d⌧

Pl(µ) =
LX

l=0

(2l + 1)Il(⌧)Pl(µ)

� w0

2

Z
1

�1

LX

l=0

(2l + 1)Il(⌧)Pl(µ
0)

LX

k=0

�kPk(µ)Pk(µ
0)dµ0 �

LX

l=0

ble
� ⌧

µ0 Pl(µ),

(75)

where

bl =
w0�lF�

4⇡
�lPl(�µ0), (76)

Using the recurrence relation and orthogonality principle of Legendre polynomials, i.e.

(2l + 1)µPl(µ) = lPl�1(µ) + (l + 1)Pl+1(µ), (77)
Z

1

�1

Pl(µ)Pk(µ)dµ =
2

2l + 1
�l,k, (78)

we obtain
LX

l=0

[lPl�1(µ) + (l + 1)Pl+1(µ)]
dIl
d⌧

=
LX

l=0

[(2l + 1� w0�l)Il(⌧)� ble
� ⌧

µ0 ]Pl(µ), (79)

which can be rewritten as

LX

l=0


(l + 1)

dIl+1

d⌧
+ l

dIl�1

d⌧

�
Pl(µ) =

LX

l=0

[(2l + 1� w0�l)Il(⌧)� ble
� ⌧

µ0 ]Pl(µ), (80)

B. P1 SINGLE-LAYER SOLUTION

The P1 single-layer problem (8) is linear in intensity, so is traditionally solved by combining the “homogeneous” and
“particular” solutions, where the former must satisfy (8) with no source term whereas the latter is a solution to (8)
with the source term included. We first consider the homogeneous problem, namely

d

d⌧

 
I0
I1

!
=

 
0 a1
a0 0

! 
I0
I1

!
. (81)

We assume that this homogeneous solution is of the form Il = Gle�⌧ for l = 0, 1. Substituting this general form into
(81) yields  

�� a1
a0 ��

! 
G0

G1

!
= 0. (82)

To ensure that (82) has a solution, the value of the determinant must be zero, namely

�2 � a0a1 = 0 ) � = ±
p
a0a1. (83)

The coe�cients of Gl are not independent, rather one can define

G1 =
�

a1
G0. (84)

For the particular solution, we assume the form Il = ⌘le�⌧/µ0 for l = 0, 1. Substituting the particular solution into
(8), we can obtain the coe�cients of ⇣l by solving

 
1/µ0 a1
a0 1µ0

! 
⌘0
⌘1

!
=

 
b1
b0

!
. (85)
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By inverting the matrix in (85), we obtain the particular solution

⌘0 =
1

1/µ2

0
� a0a1

✓
b1
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� a1b0

◆
,

⌘1 =
1
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� a0b1

◆
.

(86)

Thus, we can write the full solution to (8):
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where q = �/a1 and � =
p
a0a1.

C. P3 SINGLE-LAYER SOLUTION

To solve the P3 single-layer problem (17), we first consider the homogeneous problem, namely

d

d⌧
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1
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, (88)

As with the P1 case, we assume the solution takes the form Il = Gle�⌧ for l = 0, 1, 2, 3. Substituting this general form
into (88) yields 0

BBB@
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To ensure that (89) has a solution, the value of the determinant must be zero, namely
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where
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The coe�cients of Gl are not independent, rather by considering (88) they are related by

�G0 = a1G1 �
2a3
3

G3,

�G1 = a0G0,

�G2 =
a3
3
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3
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(92)

and Gl for l = 1, 2, 3 can be written in terms of G0:

G1 =
a0
�
G0,

G2 =
1

2

⇣a0a1
�2

� 1
⌘
G0,

G3 =
3

2a3

⇣a0a1
�

� �
⌘
G0.

(93)
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For the particular solution, we assume the form Il = ⌘le�⌧/µ0 for l = 0, 1, 2, 3. Substituting the particular solution
into (8), we can obtain the coe�cients of ⌘l by solving

0
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By inverting the matrix in (94), we obtain ⌘l = �l/� where
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and

� = 9f(1/µ0) where f(x) = x4 � �x2 + �. (96)

Thus, we can write the full solution to (17):
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where
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D. HENYEY-GREEINSTEIN PHASE FUNCTION

Many of the analyses discussed in this work use the Henyey-Greenstein phase function (Henyey & Greenstein 1941):

PHG(cos⇥) =
1� g2

0

(1 + g2
0
� 2g0 cos⇥)3/2

, (99)

where the scattering angle ⇥ is defined as

cos⇥ = µµ0 �
p

1� µ2

p
1� µ02 cos(�� �0). (100)

The direction of incident and outgoing scattered radiation is defined by the cosine of the zenith angles, denoted µ0 and
µ respectively, and the azimuth angles, �0 and �. The asymmetry parameter is denoted g0. The azimuthally-averaged
Henyey-Greenstein function can be expressed in terms of Legendre polynomials (Liou 2002):

P(µ, µ0) =
NX

l=0

�lPl(µ)Pl(µ
0), (101)

for moments
�l = (2l + 1)gl

0
. (102)

The PICASO (Batalha et al. 2022) methodology also utilises a two-term Henyey-Greenstein phase function in an
attempt to capture back-scattering. The two-term Henyey-Greenstein (TTHG) phase function is given by

PTTHG(cos⇥) = ↵
1� g2

1

(1 + g2
1
� 2g1 cos⇥)3/2

+ (1� ↵)
1� g2

2

(1 + g2
2
� 2g2 cos⇥)3/2

, (103)
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where we have two asymmetry factors, g1 for forward scattering and g2 for backward scattering, and new parameter
↵ to determine the fraction of forward to back scattering:

↵ = C1 + C2g
C3
2

. (104)

Users can specify C1, C2, and C3, however, PICASO defaults these to C1 = 1, C2 = �1, and C3 = 2. The moments for
TTHG are given by

�l = (2l + 1)
⇥
↵gl

1
+ (1� ↵)gl

2

⇤
. (105)

E. ��M APPROXIMATION

Low order Legendre expansions are not capable of accurately representing highly forward scattering phase functions.
High scattering asymmetries are produced by Mie scattering particles with sizes larger than typical optical wavelengths,
thus we must consider this limitation of the Legendre methodology. To combat this, we apply the ��M technique
(Joseph et al. 1976; Wiscombe 1977), which involves approximating the phase function by a Dirac delta function
forward scatter peak and an M-term expansion of the phase function. Following the derivations of Joseph et al. (1976);
Wiscombe (1977); Cuzzi et al. (1982), we outline the ��M methodology for our problem.
Consider the radiative transfer equation (1) without the source function:

µ
@I

@⌧
(⌧, µ) = I(⌧, µ)� w0

2

Z
1

�1

I(⌧, µ0)P(µ, µ0)dµ0. (106)

The azimuthally-averaged phase function P(µ, µ0) can be expanded in Legendre polynomials Pl (Chandrasekhar 1960)

P(µ, µ0) = P(cos⇥) =
M�1X
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�lPl(µ)Pl(µ
0), (107)
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P(cos⇥)Pl(cos⇥) d cos⇥, (108)

Approximating the phase function by a Dirac delta function forward scatter peak and an M-term expansion, we obtain

P�(µ, µ
0) = 2f�(µ� µ0) + (1� f)

M�1X

l=0
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l Pl(µ)Pl(µ

0), (109)

= 2f�(µ� µ0) + (1� f)P⇤(µ, µ0), (110)

where f is the fractional scattering into the forward peak. If we substitute P�(µ, µ0) (110) in place of the azimuthally-
averaged phase function P(µ, µ0) in (106) we obtain
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which we rewrite as
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where �

⌧⇤ = (1� w0f)⌧, w⇤
0
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(1� f)w0
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. (113)

Note that we require the moments of P�(µ, µ0) be identical to that of the original phase function P(µ, µ0) which allows
us to determine the coe�cients �⇤

l of P⇤(µ, µ0) to be

�⇤
l =

�l � (2l + 1)f

1� f
. (114)

The fractional scattering coe�cient f is evaluated by ensuring that the M th-order coe�cient �⇤
M in the new phase

function P⇤(µ, µ) is equal to zero, thus

f =
�M

2M + 1
. (115)
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In PICASO (Batalha et al. 2022), we primarily use either one-term Henyey-Greenstein (OTHG) phase functions or
two-term Henyey-Greenstein (TTHG) phase function. For OTHG given by (99), the fractional scattering coe�cient
is

f = gM
0
, (116)

for asymmetry g0 �.

F. SCATTERING CAPABILITIES

The spherical harmonics method implemented within the PICASO framework (Batalha et al. 2022) has user-specific
scattering functionality; namely, the user can specify the type of phase function for single and multiple scattering
separately. The three types of phase functions currently o↵ered by SH4 are one-term Henyey-Greenstein (OTHG),
two-term Henyey-Greenstein (TTHG) and Rayleigh. The choice of phase function impacts the coe�cients �l in the
Legendre approximation, which we recall is given by

P(µ, µ0) =
LX

l=0

�lPl(µ)Pl(µ
0). (117)

For cloud-scattering captured by a OTHG phase function (99) with asymmetry g0, the coe�cients are given by

�cld

l = (2l + 1)gl
0
, (118)

whereas for a TTHG phase function (103), we have

�cld

l = (2l + 1)
⇥
↵gl

1
+ (1� ↵)gl

2

⇤
. (119)

We note that for OTHG and TTHG we apply the ��M approximation described in Appendix E, thus the coe�cients
(118) and (119) must be adjusted using (114) and (115).

F.1. Rayleigh scattering

We include Rayleigh scattering by constructing a phase function that is comprised of a weighted sum of the cloud-
scattering and Rayleigh properties (Batalha et al. 2019)

P(µ, µ0) =
⌧cld
⌧scat

Pcld(µ, µ
0) +

⌧ray
⌧scat

Pray(µ, µ
0), (120)

where ⌧cld and ⌧ray denote the opacity contributed from the clouds and Rayleigh scattering respectively, and ⌧scat is
the total scattering opacity. The Rayleigh scattering phase function is taken to be

Pray(cos⇥) =
3

4
(1 + cos2 ⇥), (121)

and the cloud-scattering phase function Pcld(µ, µ0) will either be the OTHG (99) or TTHG phase function (103). We
note that before constructing this weighted sum, the cloud-scattering phase function has already been adjusted using
the ��M approximation discussed in Appendix E. Let us denote

f⌧cld =
⌧cld
⌧scat

, f⌧ray =
⌧ray
⌧scat

. (122)

Thus, to conduct the spherical harmonics analysis outlined in this paper, we must be able to approximate the phase
function in terms of Legendre polynomials; that is, we must be able to write the phase function in the form

P(µ, µ0) =
LX

l=0

�lPl(µ)Pl(µ
0). (123)

The coe�cients �l for the weighted phase function (120) are �

�l = f⌧cld�
cld

l + f⌧ray�
ray

l . (124)



24 Rooney et al.

Since the cloud-scattering phase function has already been adjusted using the ��M approximation, the Legendre
coe�cients �cld

l are given by (114). The Rayleigh phase function (121) can be written in terms of Legendre polynomials
as

Pray(cos⇥) = 1 +
1

2
P2(µ)P2(µ

0), (125)

where P2 is the third Legendre polynomial. Therefore, the Legendre coe�cients �ray

l for the Rayleigh phase function
are

�ray

l =

8
>><

>>:

1, l = 0,

0.5, l = 2,

0, otherwise.

(126)

We notice that for 2-term expansions the Rayleigh contribution to the scattering function is neglected, as it only
appears in the third term (l = 2) of the phase function expansion. This is an issue in the Toon89 framework within
PICASO, but is managed by including the Rayleigh contribution by forcing a third moment equal to 0.5f⌧ray , so that
when Rayleigh dominates the total opacity, the correct scattering moments are included. This is discussed in more
detail in Batalha et al. (2019). No such alternative measures are needed for 4-term spherical harmonics as the critical
l = 2 contribution appears naturally in the phase function expansion.

G. DERIVATION OF BOUNDARY CONDITION

To derive the boundary condition for upward flux F+(⌧N ) at a Lambertian surface, we must determine the total
amount of flux being reflected o↵ of the surface. This will be the sum of the reflected di↵use downward flux F�(⌧N )
and the reflected direct flux from the solar beam. The intensity of the solar beam at the surface is

Idirect(⌧N , µ) =
F�
⇡

µ0e
�⌧N
µ0 , (127)

from which we can derive the direct flux to be

F�
direct(⌧N ) = 2⇡

Z �1

0

Idirect(⌧N , µ)µdµ = F�µ0e
�⌧N
µ0 . (128)

Thus, for a Lambertian surface with surface reflectivity AS , the upward flux F+(⌧N ) is given by the reflected portion
of the downward di↵use and direct fluxes:

F+(⌧N ) = AS [F
�(⌧N ) + µ0F�e

� ⌧
µ0 ]. (129)

We can derive the equivalent boundary condition for f+(⌧N ) by first calculating f�
direct(⌧N ) using

f�
direct(⌧N ) = 2⇡

Z �1

0

Idirect(⌧N , µ)
1

2
(5µ3 � 3µ)dµ = �1

4
F�µ0e

�⌧N
µ0 . (130)

Similarly, for a Lambertian surface with surface reflectivity AS , the upward f+(⌧N ) is given by

f+(⌧N ) = AS [f
�(⌧N )� 1

4
µ0F�e

� ⌧
µ0 ]. (131)

H. MODELLING RECOMMENDATIONS

In Section 5.3 we investigated the geometric albedo produced by the Toon89 and SH4 frameworks within PICASO.
Here, we aggregate our modelling recommendations in a single table. In the current version of PICASO, these
represent the radiative transfer defaults. All of these toggles are controlled through the PICASO approx pi-
caso.justdoit.iputs.approx function. A tutorial on the use of this function is available as Jupyter notebook.

• Single Scattering

– Use default specification for direct scattering:

∗ Toon89: single phase=‘TTHG ray’.
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∗ SH4: psingle form=‘TTHG’ with psingle rayleigh=‘on’, and w single form=‘TTHG’ with
w single rayleigh=‘on’.

– Specify the functional form of the fraction, f, of forward and backward scattering according to the problem
being addressed.

• Multiple Scattering

– For planet cases with some degree of asymmetric clouds scatterers:

∗ Toon89: always use N=2 Legendre polynomial expansion with the ��Eddington approximation.

∗ SH4: choose either w multi form=‘TTHG’ if you expect the back-scattering fraction to be non-negligible,
or ‘OTHG’ if you wish to primarily capture forward scattering. Both phase functions should be adjusted
with the ��Eddington approximation.

– Additionally for SH4, include Rayleigh e↵ects in multiple scattering by setting w multi rayleigh=‘on’.
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